Neural Machine Translation with Word Predictions
نویسندگان
چکیده
In the encoder-decoder architecture for neural machine translation (NMT), the hidden states of the recurrent structures in the encoder and decoder carry the crucial information about the sentence.These vectors are generated by parameters which are updated by back-propagation of translation errors through time. We argue that propagating errors through the end-to-end recurrent structures are not a direct way of control the hidden vectors. In this paper, we propose to use word predictions as a mechanism for direct supervision. More specifically, we require these vectors to be able to predict the vocabulary in target sentence. Our simple mechanism ensures better representations in the encoder and decoder without using any extra data or annotation. It is also helpful in reducing the target side vocabulary and improving the decoding efficiency. Experiments on Chinese-English and German-English machine translation tasks show BLEU improvements by 4.53 and 1.3, respectively.
منابع مشابه
A Comparative Study of English-Persian Translation of Neural Google Translation
Many studies abroad have focused on neural machine translation and almost all concluded that this method was much closer to humanistic translation than machine translation. Therefore, this paper aimed at investigating whether neural machine translation was more acceptable in English-Persian translation in comparison with machine translation. Hence, two types of text were chosen to be translated...
متن کاملA Bidirectional Recurrent Neural Language Model for Machine Translation
A language model based in continuous representations of words is presented, which has been applied to a statistical machine translation task. This model is implemented by means of a bidirectional recurrent neural network, which is able to take into account both the past and the future context of a word in order to perform predictions. Due to its high temporal cost at training time, for obtainin...
متن کاملImproving Word Sense Disambiguation in Neural Machine Translation with Sense Embeddings
Word sense disambiguation is necessary in translation because different word senses often have different translations. Neural machine translation models learn different senses of words as part of an end-to-end translation task, and their capability to perform word sense disambiguation has so far not been quantified. We exploit the fact that neural translation models can score arbitrary translat...
متن کاملA Hybrid Machine Translation System Based on a Monotone Decoder
In this paper, a hybrid Machine Translation (MT) system is proposed by combining the result of a rule-based machine translation (RBMT) system with a statistical approach. The RBMT uses a set of linguistic rules for translation, which leads to better translation results in terms of word ordering and syntactic structure. On the other hand, SMT works better in lexical choice. Therefore, in our sys...
متن کاملBridging Source and Target Word Embeddings for Neural Machine Translation
Neural machine translation systems encode a source sequence into a vector from which a target sequence is generated via a decoder. Different from the traditional statistical machine translation, source and target words are not directly mapped to each other in translation rules. They are at the two ends of a long information channel in the encoder-decoder neural network, separated by source and ...
متن کامل